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1 Motivation

Prior to beginning Milnor’s Differential Topology, we need to understand the
notion of manifolds. This would be a sufficient factor before starting the further
discussions of smooth manifolds and smooth maps. Manifolds in topological spaces
consist of three distict properties: Hausdorff Space, second-countability, and locally
euclidean of n-dimensional space. Definitions below generally explain criteria of
topological manifolds.

Definition 1.1. Topological Space
Let X, 7 is Topology on X if,

DX, per,2)A,Ber=ANBer,3)A, 7=
Definition 1.2. Hausdorff Space

A topological space (X, 7) is Hausdorff, Vz,y € X with x # y
i.e. There is an open neighborhood of z : U, , y : U, with U, N U, = ¢

Definition 1.3. Second-Countable Space

Let (X,7) be a topological space, then we define a collection of subsets B C 7
be a basis of 7. If B is countable for its topology, then X satisfies the second
countability.

i.e For all open set U € 7, there is (A;);e; with A; € B and |

ieIAi cT

iel
Definition 1.4. Locally Euclidean n-dimensional space

A topological space (X,7) is defined to be locally Euclidean of dimension n if,
Vx € X, there is an open neighborhood U € 7 and a homeomorphism h: U — U’

Remark (Homeomorphism). Let M, N be topological space, a map f: M — N is
homeomorphic, i) f is a bijection, ii)f and f~! are both continous functions.
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2 Smooth Manifolds

Definition 2.1. Smooth Maps

Let R* be k-dimensional Euclidean space, such that = € R* as a tuple.

i.e. = (x1,22,,,7r). Then we define U C R* and V C R! be open sets. Here, a
map f: U — V is smooth if it is infinitely differentiable.

Remark (Smooth). All the partial derivatives of f exists and its continuous.

Definition 2.2. Diffeomorphism

For open sets X and Y, a map f denotes X is diffeomorphic to Y. This requires
two conditions: f has a smooth bijection and a smooth inverse.

ie. f: X — Y is called diffeomorphism, then dg: Y — X such that f, g are both
infinitely differentiable, and f o g =1dy, go f = idx.

Corollary 2.2.1. We could also say that f has a 2-sided inverse. Below the
commutative diagram describes the function.

idy
X ! >me

Definition 2.3. Smooth manifold

Let X C R" and U C R* be open sets. For those locally Euclidean spaces R" and
RF, if for each # € X has an open neighborhood W N X, that is diffeomorphic to
U C R*, then we define a subset X is a smooth manifold of dimension k.

Proposition 2.4. Parametrization

A map ¢ in which specifically maps diffeomorphically U C R¥ to WNX C R" is
defined as a paramatrization of the region W N X.

i.e. The particular diffeomorphism ¢g: U — W N X. Clearly, we could observe the
g(U) = = ;such that x € W N X.

Example. Milnor provided S™, a n-dimensional unit sphere as an example of
smooth manifold. Here we define S"™! = {2"|Xz;> = 1} C R" a smooth mani-
fold while containing all the tuples x; = (z1,22,,,,x,) of locally Euclidean space
R".

In the case of S?, the tuples (x1,z2) maps diffeomorphically to (z,xs,23) € R

such as

(1, m2) — (21, 22,1/1 — 23 — 23)
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3 Tangent Spaces and Derivatives

Definition 3.1. Derivative
Let U C R* such that z € U and h € RF,

df.(h) = tim = L&) = (@)

t—o00 t

Then a derivative of any smooth map f: U — V defined as df,: R* — R'.

Definition 3.2. Tangent Spaces

Let U,V be manifolds such that + € U C R¥; y € V C R'. First, we apply
the notion of the derivative above as a linear mapping in any point of z € U, a
collection of those directional derivatives is called tangent space: TU,.
Furthermore, a smooth map f: U — V such that x € U and y € V, with y = f(z),
we see that df,: TU, — T'V,,.

Observe from the linear mapping from the given manifold, we could see that those
TU, and TV, is a submanifold onto R and R'.

Proposition 3.3. Chain Rule

Let U C R*; V Cc RY; W C R™ with f(x) =y ,such that x € U and y € V.
Following commutative diagram describes the chain rule.
Iff:U—V;qg:V — W are smooth maps, we have

v
N
U oy s W

,then apply linear mappings in which derives from the smooth maps above

Rl
dfz dgy

k N m
R d(gof)a » B

Hence, we notice that d(g o f), = dg, o df.

Corollary 3.3.1. Identity mapping
Let U C R*, such that U C U’ be open sets with z € U.
If, i maps U to U’ diffeomorphically, then di, = i.
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Proposition 3.4. Nonsingular mapping
Let U C R¥ and V C R', such that x € U and y € V. If f: U — V is a smooth
map with f(x) =y, then k = L.

Proof. In respect to the commutative representation from the Propositionn 3.3, a
chain rule, we have

Then, the composition of a linear mapping shows that

id

R* s R s RF

This follows k = [, hence, if f: U — V is diffeomorphism, then df, is isomorphism.
i.e The linear mapping should be invertible as desired. O

Proposition 3.5. Inverse Function Theorem

Let U C RF be open sets such that z € U. If df,: R* — R* be a smooth then,
f: U — U is diffeomorphism where U’ C U. i.e. Since we already know that df, is
nonsingular, f maps x € U’ diffeomorphically to an open set f(U’).

Remark. A smooth map f need not to be always injective.

4 Regular Values

Definition 4.1. Regular point

Suppose two maninfolds M C R¥ and N C R*. If f.: M — N is a smooth mapping
then, we call x € M be a regular point of f. The strict condition applies with an
invertible linear mapping df,.

Definition 4.2. Regular value

Since we are mapping through same dimensions that are locally Euclidean, we first
set f(z) =y ,such that y € N. If f: M — N is diffeomorphism, then we could
define a regular value matches to each y € N when f~!(y) corresponds only to
regular points x € M.

Remark. This regular values generates from the Proposition 3.5 Inverse Function
Theorem.
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5 The Fundamental Theorem of Algebra

By definition, we already know the fundamental theorem of Algebra: every
nonconstant complex polinomial P(z) must have a zero. However, I sill don’t get
the Milnor’s example of using this notion.

Milnor's  Stereoaraphic prjection
) "eD% 4 P 0 ((7,0.1)

N

X \ Ri"o/

A

hy (X)

The unit sphee  * C R’ 3 the projection ), @ 5"~ {(0,0,0] — R*<0 c R

We define the plane R*x O as the complex plane .

A map f2) = W Phel®) when z#(0,0.1) (we st our Sarting pant ot (0,0,1))
’M7 approack’ @ move discrete way .

A projection from the  couth- pole (9,0,-)  shouws thot
/'\)
h )L (x)
with z ¢ (0,01)

Figure 1: This is a screenshot from my notes.
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Problem 8 et M C )R,k $t Nc R’ be 5mosTh Manifolds. Seuk 1

We want 1o show T (MxN) zyy = TMz x TNy
. 2 _
Sine M § N are both smooth maniblls, M x N C )RH is also a smooth manifol

Nouw, let (1.4) € (MxN) , we define tangent space T(M¥N) .y by local parametrization.

Fxq :Uxv—> Mxv e REY o nelghborheod (%9 ) (U xV) of (%.Y)

in (MxN) e Thee exists (§x9)(wv) = (7.4), Qiven by f)=Z,9)=Y

Here, i we fake o map §x3 as a mapping from open subsets U in R and V in IR

+ !
to IRH!/ the dervative 4 (§x9) : ]Rm n——) )EH _

u,v
(wv) o
Then, our tangent space T(MAN) x,y) is equel to e Tmage d (#x3) .\ (R ).
Now, consider pamamefiization of each smosth manifld M and N | such that zeM and 4 € ¥
we have {: Q- M cip¥ with f(uw)=x 4 q: Vo N cr? uith qcv) =4

Then we see the detuative df, : R - R* 7 49y R" - Rrt

Aeljing the same notion bove, TMx = Imoge dFu(R) of dfu 5 TMy=Tmage dqu(I8') oF Jgv_
Notice TMz X TNy Imaqe (44 *dgv ) ()Rmm)

n

Tmage (d (%), Jﬂu(‘j)) (- we o.lrem!j know $(U)of x in M
31 3W) of yin V)

= Image d($%%) (uv) (IRMM) (" given f(w=x ,3Cw)=4)

Hence, T(MxN)(Z,ﬂ = TMzxTVUy
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i) Geoph ¢ et of all (x,4) € MxN with fe2)=Y | §: M= N be a smosh map,
we want to show that graph ™ is c smovth manifold.
let MCR*,Nc R! e open sefs , sine §:M—> N is o swooth mogping,
for each x ¢ M, J open set W cR® with TeW § a smooth map F:(J— IR*
in whch coincides § thrughout W N M

Here, consider ¢ paramefrization q: U -> M c]Rk % h:v= veR! ,

we observe the commutative mop w F 3 |R‘
31 s
03 ? Vv

Ko 3 (> §=F in woM)

Now, graph " is a set of oll he sets (x,$z)) jn MxN
,and we olveady know that f maps smovthty g () info htv) for neighborhauds

q(u) of  ; h(V) of f(X).

This means, qraph I has a subset X xY ¢ lKk” such that € X, fmeY
(i.e. (z,47) € )(y‘f) confeins . neighborhood (YNM , Jdifteomorphic to uxV

o} te Fudidesn space R™" (wote: UcR™ 4V C R") ,

Hence, qraphl is a smovth manifold
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)l) Tr'(,,‘,, C TM=z XTNLQ = qmuph (dfz)
Consider commutative jram of the )inear MmappPing phero (| ClR_m, VC)R.n, wcR"

such that w=9'(x), y= h"(*}) with fx) =Y

we have ]R.k dfx Y )Rl
J‘ju] Wth
R" > R
d(h'e§9)u

sinee McRE 4 vCRY, we see that dBx mops Image (d9u) info Imege(dhv) .
Moreover, dfy does not always depend on the particdar F ; 50,

ddx = dhuo d(Kofeg)yo 490

This gives us fhe fuct @ dfz: TMp = TWy

Now, TMz x TNy = Image(dgu x d hv) (’ﬁ-mm)

[}

Imase (49uln), d hv(‘i))
graph (d fz)



_Problem 10 et McRY, TM={ (xm € MxR* | veTMsf Seuk 4

i) we want to show TM is a smooTh manifold

gine \'s ore elements of the vector space THx ; defined as tangent vectors
wMat x, TMx CR*.

Now, TM is a set of all the sets (%, TMz) phere T= (. , %) be o tuple

For all XM, dfx cories X homeomorphially to TMz and botk diz ,dfz & smooth,
itis clealy a difHeomor phism

Then, we hove o subset T CTM such that (7,V) € T has a neighborhood W N'T

in uhich is diffegmorphic to an openset ([ in R

Hene, TM is a smoofh manitold

i) we went fo show §:M-N be a smuwh map; 50 as to 4f: TM TN
where dC9f) = 49 o df
let MRS, NCR! suktoat zeM and 4N, i §TMAN s a smeoth,
Then k=1 wih ¢$(x) =Y . )
Applying  chain with a commutotive mep M —’t> N "{'_I> M

d

Then, & linear map ot our composition RF ﬁ> );{ﬂ i> R

¥—_—/7
1d
50, if §1MIN is difieomorphic fx is isomorphic,

Now, let TN = 3 (du) e W xR' | ueTVy ]

e 4=, we set §= 0y pen e 25 Ty S THy
1d
This implies ™ af > TV dq , T™
14

Hence, a linear map d4:TM = TV is isomorphism
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#9 Seuk 1
) We want to show Fhat graph ﬁz,.é) is & smooth manifold .
let §: M =N be a smooth maP. Graph [(xq) = { (14) € MXN | fm=9}
Let MR 4 NC IR, locally - Fucldean cpaces. Notice our [1ay) C IR

Now, visualize our graph, ‘!Fl

Then, consider projection map W:lpyy — M § T M — [izy)

(% fem — % x — (%)

Gince §is a smovth map , we aleody know the map containg smooth inverse and bijection

Indeed, T and ' are both continueus and bijective alonq with smocthness
concludes to diffeomorphism . Now, we will use |ocal parametrization to confiqure

rc-lx-«-” i5 oL smooth manifold .

let U,V © MxN such that open sets of )R'“', e. uc |K"”

kil
We set k!’j UxV — MxN C IR pe o paramefr 2ation

§ veR™:m kel

j.e. Therg exists (hxg)(UxV) = (%,4) given by h(u) = and (V) =4 .
We hawe fo be coreful that Y = $(x) where { is diffeomorphism,

Hene®, our Jocal pammetrization hx9 maps U and V to the neighburhood of x and f(2),

it is also diffeomorphism
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Observe the cwmmutative diagram

T,
MxN —» N
Ux V ﬂ—? u
2

The projection map T, maps MxN to our Image]((M) = N smoothly.

Then, T = cl" oTo(hxg) © UxV s U is also a smoeoth proyection

Hence our projection map My has o smooth bijection and inverse, jt js di€feormorphism
between open sets u,vc r:x.g) .

Thus, we have shown that [(zg) iS a smooth manifold o
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ii) We wont o show Ty, & TMx x TNy
from M c R ,NC RY open and f:M = N ke smooth mapP  we will parametrize Mixy)

qven by q: M — [ley) € IRk”, e, 9: T (%4m)

Then, our tangent space of the graph Txyy = Lmase (442) suck tat R<— RE

This means Tliy) = ['dym ¥ x€ M.

If we parametrize M and N seperately —such that b : U — M c IR {hy:V— NC)RI)
of a neighborhood |, (U) of % €M with h(w) =% and hy(V) of €N whee 4=,

with hatv) =4 | then we have the following fangent spaces.

TMx = Imege (dhw) and TNy = Image(dhw)

Now, TMz X TNy = Image (dhu % d hav)
Image (dhu(X) , Ahzv(‘i)) ; f) =9

2kt!

= Imoge (dx x dim) c R
(. Im(de): R — R" 4 Im(dgm): R — )Rk“ )

Hence, Tl © TMxxTNy



10 Seuk 4
j) Given M C R, we define TM= {(%,v) €M xR | VE TMz} a5 o Tamgent bundle space.

8. TM = xlgMTMx . We want 1o show that TM is & smooth manifold

Construct a  projection map T:TM —3 M that is smooTh,
(xV) ) %
je. ¥VETMz T maps to ¥xeM
Qearly, W'+ M — TM  js abo smooth
Z 5 (%)
Then, we se@ that our projection map is diffeomorphism.

Now, construct o local parametrization from our projection ; {ollowi"j the commutative qram

2k

- k
Here, if we locall) porametize TM such that h: (V) = T C)RZ ,
it followed by smooth, projection T, his also a smoth map.

Hence, TM i5 a SMmovth manifo)ld. g

i) for any smooth map {:M— N = 3f:TM = TN
)-e. The linear maprimi from TM 10 TN

first, There must be fhe existenice of - sided inverse ; § {  are both ;n-fini’(ey difterentiable

idN
R
M °L>N 37M T}7>N

2
N an

k .
This follows M C)Rki NCR , suck that df is isymorphism
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1 2 . Seuk 1
let § IR, consisting of points (z.4) , such that *+4*=1 .

#1 We want 1o show that &' is a smooth manild.
since 5'cR',a locally - Euclidean space, ot any point p € 5!
is o L-tuple P=(7,9)  Now, from o loca) parametrization of S' such that U € 5 with PeEU,
f:U—> Mc RS (k42) , for each partio] derivatives (af/u‘, ) a%ji ) jep exists
Explicith | we could consider 3 coces from P=(%,4) €5
i)  x=0 then wehave a map 9. — X for zeX 1Y€y
with 4,4) = [I- or 9,(4) = -Ji-2*.
Notice  catries { to X homeomorphically, and the graph T'q =
i) 1 xyo , then WY — X with hiy) = i=g
4 i
From The open subset 4 € (4,1) €I, h has smooth bijection and inverse.
The graph h = &'
i) ¥ x<o , then ue have @ smooth map H:{ — X with H(Y) = -}T——lf

Using the result from i), forany Yecil), Hand H? js smooth end bijective,

Moreover, because §' € IR* and we coud construct nd-countable basis from )Rzl
S is also 2nd - countable

Also, we can construct o openset in any poirfs of &', cuch that P (%,9,) Q(%,49,) €'

1 e For any P#Q  there exists open neighborhoods  P: Uz @ :Ugy, |
px,Y)
K\@ Then, we fid Up 1 Ug = qﬁ)ané Phus it is Hausdorff
) x
U a j

To wnclude , &' sotiskies the properties of manikolds along with smoothness

it IS a smooth mani&;)éu



AL Tangent space TS'ey . let PES such That P=(%4) .

Y
R

S' P(xl")

/ (z,4')

\/ -

Mere, for eack pes' c IR™, the devvative is 49 IR — R

From o Jocs) parametization of < c )R

2
we hove shown that &: xex cR — S'c R

x

— (%, 4)

aearlj S is a smosth manifold of IR

lmplicilly , we have a tangent )ine ot (X,4): dx +d4y= O

Seuk 2

Precisey ot o point (0Y) T s',,.j C R of dimension | is the fungent space

of o'

We want fo show §: 6 — IR such that §(24)=Y is a smooth map

In‘.tlalljl we will construct 2 open sets WL,V c §' Suck that U NV = ¢ .

let U={%P(x,9) €8 | 2>0f 4 V= {¥@(xy)e€s |z<0]

Then owr map {: 5 — Y describes by the following :

N\
r\

N

> X

v



Seuk 3
D) Cose UW: we have $Cw) =4, £14) =([F8,4)
The derivative df, = dy f{ A{{l =(% ,\)
ii) case V : we have (V) =4, 1(4) =('fl-_‘ji,‘1)
The derivative df,=] 4 «H"-l 2( C \)

Notice, { and " are continuous and bijective ; hence it is homeomorphism,

Mo, each cosrdinate PEU 1 @ €V has derivatives .

Thus, { is a diffomorphism | 50, jt is a smosh mep

#4  From a smoothmap {5 — R with F(%9)=9  the qrap ['4
is defived by [ig) = { (x4) € 'R [ fexy) =)
We a)maé/v know that S is @ smaoth manifold of ] - dimension
i) From case u: [f, = { (K,‘j),ﬁ—-—jzj

Right part of S':xi+y*z] witk height (-1,1)

i) Likewise, from v : [, = { (%,4)  -[7-9 §

left half of S': 2+ :] wuith he(d,))
o .
, \

Hence, our qraph J'(f) is 2-dimenson manifld jn R
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N
_jEE /mﬁ—) since $(1,4) — Y
: |
. ) X we -;mJ "F(a) Y /ﬁ"
\J At the point Mi,‘/ﬁ), The fangent line to 5!

is ;mp)iciﬂ/ given by Egz +=dy=0

In coordinates (7z',4') :(,‘—_1+le—'-7_+&-1) = z'+4' =1z
%0, the derivative 4f,:)R = R maps each xé€ X onto +dr { yef oo 7z 44
Observe that the graph [ df, < IR is the )ine x4y =J7
Also, Tty is the point (% ) suck that (7.%) > &

Then, the fangent space T'fa is @ Jine fhat passes (&= =) L Y=7

Hence, ['df, = T(Th) o



a= (Y Ys) €5
J(: 5'_) )R Z—b (Vf,‘_'l/J;)

such that §(7%,4) =4 N
\ 7 x

Notice, TS, c R of dimension |

S0, dfa is a )intar map from TSa to T)Rti where ‘1=-f[a)

. R »
y wﬁ
/sz > g le

i Jentif/

Then , dfs: IR — R

The dervative for a smooth mop
we find: Jd4(x4) : 2xdz +2ydy = dy

Then, ot the point (5, R) , $(R'G) — &
; The derivative is 2 (Yz)dx + 2-(Uz)d4 = dy

or exp)iciw , =(z-%) +J2(4-9) = \1"'1‘



Sard and Brown
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1 Introduction

Prior to studying Sard’s theorem, we will first review the terms of rank in
smooth maps, regular values, and density. As of preview, the theorem explains
that the smooth map from the set of critical values to other Euclidean space is a
Lebesque measure zero. Throughout history, the basis of the preliminary theorem
was discovered by Arthur Brown in 1935, extended by Morse in 1939, then Sard
proved the theorem presented in the American Mathematical Society in 1942. In
turn, it is also known as Sard-Morse-Brown theorem of analyzing the smooth map
of critical set. Our goal here is to show that why does Brown theorem is a corollary

followed by Sard.

Definition 1.1. Rank in a smooth map

In general, let M C RF and N C R, such that x € M; y € N with f(x) = v, if
f: M — N be a smooth map between smooth manifolds M and N, then we see
the derivative df, : TM, — T'M,. Here, rank of a smooth map is equal to the rank
of its differential at a point x € M.

i.e df, has rank(k) so that the image(T'M,) has dimension k.

Definition 1.2. Regular values

Let M C R™ and N C R", we have a smooth map f : M — N. If for any
x € M, such that the derivative df, is invertible, we call it as a regular point of
smooth map. Followed by the inverse function theorem, where f may not be always
injective; Jy € N with f(z) = y if our inverse map f~!(y) has only regular points,
then we define the point y € N to be regular value.

i.e. From a smooth map f: M — N with z € M; y € N, such that Vx € f~(y),
the linear map df, : TM, — T'N, is surjective.

Further observation: Let # f~!(y) be a collection of regular points, f~'(y) € M
with y € N be a regular value. Here, if M is compact manifold from a smooth
map f : M — N, then the set of regular points f~!(y) is finite. Since, both M
and N are manifolds in a smooth map f, there must be a Hausdorffness, second-
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contablility, and locally-Euclidean as a property of topological manifolds. Then
we could consntruct some pairwise disjoint neighborhodds Uy, --- ,U; such that
UUk C M from a set of regular points #f~!(y). Likewise, 3V, C N disjoint

kel
neighborhoods such that for any 3 € V, we have #f 1(y') = #f !(y). Observe

that each neighborhood a map U, € M to V; € N is diffeomorphism, then we can
take V€ N =\ Vi — f(M - | ).

kel kel

Remark. Compactness
Let (X, 7) be a topological space, such that a collection of open subset A, C X be
open covering X. i.e. U A = X.

kel
Then, X is compact whenever VA, contains finite subcollection that also covers X.

i.e. Va; C Ay, then Uaj =X
jel
Definition 1.3. Critical values
From our smooth map f: M — N, if dxr € M such that df, is singular, we call it
as a critical point of f and the image f(x) € N is a critical value.
i.e. The derivative from a smooth map f at a point x € M, df, : TM, — 0.

Definition 1.4. Density

Recall from a Basic Topology, let (X, 7) be a topology on X; let U C X be a subset.
If U = X, then it is everwhere dense. Also, U is dense in X if and only if non-empty
open subset V' C X, such that U UV # ¢. However, we need to expand this notion
toward manifold.
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2 Sard’s Theorem

Theorem 2.1. Sard, 1942
Let U € R™ be ann open set, let f: U — R" be a smooth map.
If

C ={x € U|rankdf, <n}

, then the image f(C') C R"™ has Lebesgue measure zero.

Remark. Lebesgue measure zero

Milnor briefly explained that for any ¢ > 0, to cover imagef(C') by a sequence of
cubes in R™ with total n-dimension volume is less than ¢.

i.e. For f(C) C R", if the image f(C) is Lebesgue measurable zero, we define as

m(f(c)) = Z Vol,B; < ¢

(the sum of open cubes B; in total of n-dimension).

Corollary 2.1.1. Brown, 1935
Let M C R™, N C R", from a smooth map f: M — N, the set of regular values is
everywhere dense in N.

Now, we want to show the analysis of Sard’s theorem contains the fact of
Brown’s. First, we will use some concrete example in order to demonstrate Sard’s
theorem.
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#b

At the point (%,4) in The smooth manifold S'
First, we find the derivative : AS'M = 2xdx + 2444 =O ; the slope
let (%,4) be (x.4) €5, The equation of the )inear )ine
4oy = - (2%
Explicitly , we have 24(4-4) + 2x(x-x) = O

This Is TSy CIR™ of dimension |

) Y= O with X <O or XYO ,Then TSy jo the following :
4
For X0, T, is the line x=]

]
/\ Likewise, for %<0 | TSy : %=-|

X
"/’ Theslope:—zf;j-zoo

x=-| x=1

i) %=0,Then (%.4)=(0.1) or (0,)

. d4 _ _x _
4 simce Iz = ‘j—o'

4= TSxwy i5 the linesr line 4 = ]

1N
L

—_— -

x
!



iii) Y0 ,4% or x<0,4 <0

\"‘1 Our A}é/z = ’Z‘% (O i 50
/ (x4) the ‘followin‘l Jinear Jine Shows 75'1,1
y \\’ x
(x4)
N

W) %<0 ,94%0 or 790,440
'.1

¥
AT,
/]

Combine all the cases, TS'yy is the linear line for all (%4) €5’

T6'xy € R with 9% = -

z
q)O

0

from this case

|1

K
\/ S




We wart fo show §:5' — R with $(%Y) =Y is a smoothmap

let Uc 5', VR then we have the following commyfutive diaqram

V4
N
Uu o >’ U

This gives rise o the dervative  since U cR* { vc IR

n
A&/ w
R* L, YR

1 Jentifj

Explicithy  construct open sets in &' with the following :

U={m4)es14>0 | LUy = {(z1)es] 4<Of




Observe the intersections

let W= UNUy, then f(74) — Y shows

UAnu3 ,U|nuq i U;nu3 ’Uz,ﬂuq

9 ¥t
_' ~ ..’
AR
2 “ ;z 4 ) Z
4\_/1 S
we observe that (W) — (01) e R
Likewise, W, = UiNUy Then F(W,) _,(c“)
! q
! T
v \ %
| N . .
) \y ” ' o

5eﬂini , W;z U N U; i wq = U2 Mq
i f(wy) — (0.71)

f(w;) — (0,1)cR

| “
(AN i

2 Hoy x ) e S

-'_ ‘.,\

R a4
\/-\ 1 X > 0 > Z
. /

. L

Each WU, W3, Wy shows homeomorphism

vence §:6' — )] is a smooth map o

and portic| dervatives exist



H#C  Tne point a=(/7,7z) €5'

First, we will find the tangent space TSa ; described as

4

4-9'= - Z (z°%)
'.jl

N
Kw’ﬁ) nere, (7,y) = (%5, ')
I

x

T e T xt

From a smoothmep {:5' — IR | df, :IR"— R

sine f(x4)=Y , we find df, TSy — K such that df(%.4) =dy
ie. The tament space TS'(y oy maps fo IR n ¢ -axis

Then, the gmph | (d1a) < R is x4y =z [z, dy=d2)

%0, the linaar line %44y =2 ena plne =2

Since the Tmgw is §'=Z44Y*z] on a plane 4=2

T o i5 The linear line that pases (75,73, %) )jing on fhe plane =3

x+4:[ with dy=d2

"
0"
.
.
g
.
2
.
/-
.
.
0"
L
/
¢ /

) [ /"'
5.5, %)

.
0"
y
1Y




#C-2  onsider 9:(%,Y) — R defined by 9(rg)=4*

Since (x4) €5', we find the qraph " J(x4) = (%,9,9%) as the follwing

7

z
At the point a (%5, %) : §(@)= V= Ty =tlg%5,"%)
d9,: Ts5a —IR  such that dy =24

This means TS, : x4Y=J2 — 24 with 9(a) €24

[d9a = (X4Y=12,24) is fhe linor line x4+4Y=J2 on a plane 2=24

XY
Y.




