
THE WEYL INTEGRATION FORMULA

CHANG YOON SEUK

Abstract. We demonstrate the Weyl integration formual on class functions. In fact, this is the fundamental
integration formula on Lie theory that reduces the integrals of conjugacy funtions which are invariant measure
on the compact Lie group over the maximal torus. Ultimately, this formula stretches to the Weyl Character
formula. We will built from the essential properties and then derive through the integration formula.
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1. Introduction

The Weyl integration formula is the integration formula of the class functions on a compact Lie group. In
this paper, we want to show the following theorem:

Theorem 1.1 (main). From G be a compact Lie group, f be any class function on G, and dµ, dν be the
normalized Haar measrue on G, T , respectively, then we have the integration formulaˆ

G

f(µ)dµ = 1
|W |

ˆ
T

f(ν)|det ([Adν−1 − Id]|p) dν

Such further demonstration is heavily from chapter 6 of Lectures on Lie Groups by Adams [1] and lecture
series of Wang [3]. The author also inspired from chapter 1 and 17 from Lie Groups by Bump [2], but it
is too advanced for the author’s current progress, so the detailed exposition has been omitted. In order
to explicitly observe the formula, we shall provide the initial definitions and basic set up as follows. For
a notational consistency, let g, t be the Lie(G), Lie(T ), respectively(Lie algera of the Lie group G and the
maximal torus T ⊂ G).

Definition 1.2. The quotient group N(T )/T is called the Weyl group of G. N(T ) here is the normalizer of
the maximal torus T of the Lie group G, which is

N(T ) = {µTµ−1 = T : for any µ ∈ G}

Definition 1.3. The orbit of the Lie group G through the manifold m ∈ M is

G · m = {µ · m|µ ∈ G} ⊂ M

, and the stabilizer(i.e.the isotropic group) of m ∈ M is then

Gm = {µ · m = m|µ ∈ G}

Then, the smooth action from G to M is transitive if we have only a single orbit.i.e. G · m = M for any
m ∈ M . We call this a homogenous G-manifold.

From a basic Lie theory, we have seen that the G − invariant inner product on g is a bilinear form ⟨·, ·⟩,
satisfying

⟨Ad(µ)x, Ad(µ)y⟩ = ⟨x, y⟩ for all µ ∈ G , x, y ∈ g
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where Ad(µ) is just an adjoint representation Ad(µ)x = µxµ−1. Then we show the basic set up. The quotient
group G/T is a homogenous G-manifold with tangent space defined as TeT (G/T ) = g/t = p. In this sense,
we may fix an adjoint inner product on g and p to be the orthogonal complement of t ⊂ g. Which means,
we have the decomposition g = t⊕ p ;so, p ⊂ g. Such an adjoint invariance ensures this decomposition to be
well-defined. Now we show the key-steps of the proof of the Weyl integration formula.

(1) Parametrize the function, denoted Φ to Ψ
(2) Jacobian computation for the change of variables
(3) Observe the regular points
(4) Use the lemma on a density
(5) Obtain the integration formula on class functions

In the process, we begin with the Haar measure in the following section.

Acknowledgment This exposition is from the author’s second talk on the undergradute seminar in math-
ematics. Especially, the author would like to thank Caleb Ji, who’s the instructor of the seminar section on
Lie theory.

2. The Haar Measure

To understand the Weyl integration formula we need to first understand the Haar measure. Briefly
speaking, from the Haar integrable funtion f on Lie group G, we know how to integrate a function on a
manifold. We start with a fixed volume and this requires the manifold to be orientable. Clearly, any Lie
group is orientable since the tangent bundle TG ≃ G × g is trivial; so, the volume always exists in G. We
begin by showing the definition of left invariance.
Definition 2.1. A volume form ω on Lie group G is called left invariant if L∗

gω = ω for all g ∈ G. i.e. No
matter which position we choose for a Lie group, the way of measuring the volume does not change.
Definition 2.2. The Haar Measure is an invariant measure defined on Borel − σ algebra
Remark 2.3. Borel − σ algebra is a σ − algebra generated by Borel sets. Here Borel − σ sets is the smallest
collection of subsets of topological space. Let (X, τ) be topological spaces, where τ ⊆ P(X) be the collection
of open sets. Then, for any E ∈ B(X),

Borel set, denoted B(x) = {opensets of X;
⋃
i=1

Ei;
⋂
i=1

Ei; complements:X \ E ∈ B(X)}

Now, we show the uniqueness and existence of the Haar measure.
Theorem 2.4. Followed by the definition(2.1), for any Lie group G, a left invariant volume form exists,
and it is unique up to multiplicative constant.

Proof. From a Lie group G, we take nonzero basis of n-form, such that, ωe ∈ ΛnT ∗
e G be an nonzero element,

where dim(G) = n. For any µ ∈ G, let ωµ = L∗
µ−1ωe. i.e.By left translation, we move the volume form from

the identity e to any point µ ∈ G. Then for all µ, ν ∈ G, we compute
(L∗

µω)ν = L∗
µωµν = L∗

µ(L∗
(µν)−1ωe) = L∗

µL∗
ν−1µ−1ωe

and since
L∗

µL∗
ν−1µ−1ωe =

(
L(ν−1µ−1) ◦ Lµ

)∗
ωe = L∗

ν−1ωe = ων

Hence, we see the left invariance (
L∗

µω
)

ν
= ων , which implies L∗

µω = ω

Thus, we have shown the existence of the volume form. Next, we want to show the uniqueness. Suppose
now that ω′ be another left invariant form on Lie group G. We already know that ΛnTeG is 1-dimensional,
and there exists nonzero constant, such that, C ∈ R×, so that ω′

e = Cωe
. Clearly, from the result above on

existence, for any µ ∈ G, we have the left invariance
ω′

e = L∗
µ−1ω′

e = CL∗
µ−1ωe = Cωe

Hence, we have shown the ω′ = Cω everywhere on G, so that the left invariant volume form in unique up to
multiplicative constant. □
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Then by the definition(2.2) and the result of from the theorem above, we can explicitly show what it
means to be the Haar measure. We will use differential form and integration, in order to define the measure,
denoted m on the Lie group G.

Definition 2.5. Assume that ω is positive and compatible with the orientation of Lie group G. Let us
denote CcG be the space of compactly supported conitunous functions on G.i.e.

CcG = {f : G → R| f is continous and supp(f) is compact}

where,
supp(f) = {For any µ ∈ G|f(µ) ̸= 0}

For any conitunous function f ∈ CcG, we define a measure on G via

f ∈ Cc(G) 7→ φ(f) =
ˆ

G

f(µ)ω(µ)

Observe that this measure is left invariant from the fact that for any fixed ν ∈ G, we see that

φ(f) =
ˆ

G

fω =
ˆ

G

L∗
ν(fω) =

ˆ
G

(L∗
νf)ω = φ(L∗

νf)

So then, we call such left invariant measure to be a left Haar measure. In particular, by the definition(2.2),
let E ⊂ G be any Borel set. Then we see the left invariant measure m for any ν ∈ G, such that,

m(E) = m(LνE)

Definition 2.6 (Normalization). Suppose that we have a compact Lie group G. By the left invariance on
differential form, for any µ, ν ∈ G, we know that

d(µν) = dµ ,or equivalently,
ˆ

G

f(νµ)dµ =
ˆ

G

f(µ)dµ for any fixed ν ∈ G

Then, if we denote ω = dµ for any µ ∈ G, then the Haar measure ω is normalized if

V ol(G) =
ˆ

G

ω = 1

Also, on any compact Lie group G, there exists a unique normalized left Haar measure.

3. The Weyl Integration Formula

Understanding the Haar measure, we are now ready to demonstrate the main theorem. To begin with,
we will first show the lemma.

Lemma 3.1. There exists a normalized density d(µT ) = dµ/dν on the quotient G/T , which is invariant
under G − action.

Remark 3.2. Since the Lie group defines on a smooth structure, we may express the Haar measure in local
coordinates as a (density) × (standard Lebesque measure). i.e. The Haar measure: dµ = f(µ) · dx, where
f(µ) is a density and dx be the Lebesque measure.

Theorem 3.3. Let G be a compact Lie group and f be its class functions. Let dµ, dν be the normalized
Haar measure on G and T , respectively. Then, we have the formula on class functions,ˆ

G

f(µ)dµ = 1
|W |

ˆ
T

f(ν)|det ([Adν−1 − Id]|p) |dν

The strategy of the proof is as follows. It consists of two parts: parametrization of the function near base
points and Jacobian computations, and the observation of the regular points followed by the lemma above.
The former one observes the conjugacy classes and shows how the group twists around the maximal torus;
the latter version inspects the regular points for a geometric interpretation. Combining all, we will get to
the resolution of the proof.
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Proof. Consider the map that is not currently volume preserving

Φ : G/T × T → G

, where
(µT, ν) 7→ (µνµ−1) for any µ ∈ G, ν ∈ T

For a simpler case, we take the computation near the identity: (eT, e). Then fix µ, ν and construct a
parametrization, such that,

Ψ : G/T × T → G defined by (hT, ξ) 7→ (hνξh−1ξ−1)

We observe Ψ in the composition map via

Ψ = Rν−1 ◦ C(µ−1) ◦ Φ ◦ (L̃µ × Lν)

, and compute each part explicitly. Start with Rν−1 , and this is clearly a right translation(i.e.multiplication)
by ν−1. It sends our element x near ν to the identity by x 7→ xν−1. Next, C(µ−1) is the Jacobian element
coming from the left multiplication of µ−1. i..e.We can view this as the conjugacy by µ−1 and differential at
the point µνµ−1. In fact, this is a volume preserving since the Haar measure under conjugation is invariant.
Φ here is a natural conjugation map, which sends the point, such that, (µhT, νξ) 7→ (µh)(νξ)(µh)−1. Finally,
the last part consists of two parts: L̃µ and Lν . The former part, L̃µ is a left multiplication by µ on homogenous
G/T and the latter is the left multiplication by ν on maximal torus T , which we already know. Recall by the
lemma above that the density on G/T given by dµ/dν is invariant under G − action; it is clealry a measure
preserving in turn. So then, the map L̃µ × Lν sends a point (hT, ξ) 7→ (µhT, ξ). Notice that the Jacobian
here shows how the volume at G splits into the quotient spaces G/T and T . i.e. The |detΦ| transforms
the Haar measure on G to G/T and T . Also, as we already know dµ and d(µT ) are G − invariant, its
corresponding Jacobian must be 1. In short, each of the map preserves the volume by the invariance of the
Haar measure. Henceforth, we take the differential near the base point (eT, e)

dΨ(eT,e) = dRν−1 (ν) ◦ dC(µ−1)(µνµ−1) ◦ dΦ(µT,ν) ◦ d(L̃µ × Lν)(eT,e)

Each differential part has determinant of 1, which means,

|det(dRν−1 (ν))| = |det
(
dC(µ−1)(µνµ−1)

)
| = |det

(
d(L̃µ × Lν)(eT,e)

)
| = 1

We also nothice that
|det

(
dΦ(µT,ν)

)
| = |det

(
dΨ(eT,e)

)
| = 1

Then, we compute the differential of the parametrization map Ψ at (eT, e), given by the conjugation for
any µ ∈ G with lineariation of the path. Let X ∈ (g/t) and S ∈ t, where g = Lie(G) and t = Lie(T ),
respectively. We consider the tangent vector near the origin (eT, e) as (X, S) ∈ (g/t) ⊕ t. We choose our
path by lineariation, such that

µ(a) = exp(aX) ∈ G and ν(a) = exp(aS) ∈ T where a ∈ [−1, 1]

So then, µ(0) = e and ν(0) = e with µ′(0) = X, ν′(0) = S. We define the map

f(a) = Ψ(µ(a), ν(a)) = µ(a)ν(a)µ(a)−1 = exp(aX)exp(aS)exp(−aX)

Notice that this is a smooth map f : [−1, 1] → a with f(0) = e. We calculate by the product rule,
d

da
f(a) = X · exp(aX)exp(aS)exp(−aX) + exp(ax) · S · exp(aS)exp(−aX) − exp(aX)exp(aS)exp(−aX) · X

at a = 0 gives us f ′(0) = X +S −X = S. Hence, we have shown dΨ(eT,e)(X, S) = S. Now, for a simpler and
directforward case with a relative decomposition of the Lie algebra p ⊕ t; we can calculate the differential
dΨ at (eT, e), given by

dΨ(eT,e)(X, S) = (Id − Adν−1)(X) + Adν(S) for X ∈ p, S ∈ t

Since we already know that T ⊂ G is abelian, and also |detAdν | = 1, where the map Φ : G → R+ defined
by µ 7→ |detAdµ| is Lie group homomorphism. i.e For any adjoint action is the linear map Adµ : µ → G,
such that, X 7→ µXµ−1, taking the determinant gives a function: µ → |det(Adµ)| = 1. This is because our
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Lie group G is compact, then a continous group homomorphism from a compact group to R+ must have its
image to be a compact supgroup of R+, which is {1}. It follows to see

|det(dΦ)(µT,ν)| = |det(Adν−1 − Id)|pdetAdν | = |det(Adν−1 − Id)|p|

so that we find
det(dΦ)(µT,ν) = det(Adν−1 − Id)|p · detAdν

Now, we investigate the regualarity and we deduce our focus into maximal torus T ⊂ G, where |detAdν | = 1
for all ν ∈ T . Geometrically, an element ν ∈ T is called regular if its centralizer in G is exactly T , and in a
compact Lie group, the regular elements form a dense open subset. In fact, such determinant vanishes for
irregular ones, which has a measure zero; via conjugation, most elements in T and G are regular. Then we
obeserve that there exists open dense subsets T reg ⊂ T and Greg ⊂ G. So that det([Adν−1 − Id]|p) ̸= 0 on
T reg, and Φ is locally diffeomorphic. Furthermore, going back to our initial map Φ where we have

Φ(µ1T, ν1) = Φ(µ2T, ν2) if and only if ν1, ν2 ∈ T be conjugates in G

Equivalently, such conjugates lie in the same orbit of W , so Φ is |W |−to−one covering map from G/T ×T reg

to Greg. i.e. for a fixed regular point ν ∈ T reg, its conjugacy class of G is {µνµ−1 : µ ∈ G}. Since ν is
regular, every conjugate of ν arises exactly |W | times from the different quotient G/T representative. As
before, we have the map Φ : (G/T ) × T → G, defined by (µT, ν) 7→ (µνµ−1) where µ1Tµ−1

1 = µ2ν2µ−1
2 . So,

wehn ν1, ν2 are regular points at T as they belong to dense open subsets of T reg, their centralizers are exactly
T itself. If so µ1ν1µ−1

1 = µ2ν2µ−1
2 , then ν1 = (µ−1

1 µ2)ν2(µ−1
1 µ2)−1. Since ν1, ν2 ∈ T is maximal torus, the

only way they can be conjugated is whenever the conjugating elements µ−1
1 µ2 ∈ N(T ). Finally, by using all

the observation above, we move forward to the last step. For any class function f where f(µνµ−1) = f(ν),
we may write, ˆ

G

f(µ)dµ =
ˆ

G/T ×T

f(Φ(µT, ν))dg, where dg is the Haar measure on G

Applying Jacobians of the change of variables since Φ is not volume preserving; we rewrite the formula asˆ
G

f(µ)dµ = 1
|W |

ˆ
G/T ×T reg

f(ν)|det[Adν−1 − Id]|p|d(µT )dν

Here, we already know that the density d(µT ) on G/T is normalized, so that such integration over G/T
contributes to a factor of 1. Hence, we obtainˆ

G

f(µ)dµ = 1
|W |

ˆ
T reg

f(ν)|det[Adν−1 − Id]|p|dν

, and thus, since the set of irregular elements has a measure zero, which allows us to extend to all maximal
torus T , we have shown the integration formulaˆ

G

f(µ)dµ = 1
|W |

ˆ
T

f(ν)|det[Adν−1 − Id]|p|dν

□

Corollary 3.4. We can extend our theorem above to the continous function. Let f ∈ C(G) be any continous
function on G. Then we obtain the same integration formula.

Proof. Let us define f̃ on maximal torus T by averaging over the conjugacy, f̃(ν) =
´

G
f(µνµ−1)dµ. Clearly,

this is W − invariant function on T , and we can identify easily as a class function on G, which is now´
G

f(µ)dµ =
´

G
f̃(µ)dµ. Hence, by the invariance of the Haar measure, we get
ˆ

G

f(µ)dµ = 1
|W |

ˆ
T

f(ν)det ([Adν−1 − Id]|p)
(ˆ

G

f(µνµ−1)dµ

)
dν

= 1
|W |

ˆ
T

f(ν)det ([Adν−1 − Id]|p) f̃(ν)dν

□
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Example 3.5. Let G = U(n) with the maximal torus T = {diag(eiν1,··· ,eiνn )|νj ∈ (0, 2π)}. Followed by the
result of the theorem(3.3), dν be the normalized Haar measure on T , and for each µ ∈ G is the conjugate
to the diagonal matrix ν ∈ T . So, we see that there exists u ∈ U(n), such that, µ = uνu−1. We define the
parametrization map

Φ : U(n)/T × T → U(n) defined by (uT, ν) 7→ (uνu−1)
Then, in order to ensure a volume preserving, we can reparamatrize up to Jacobian on the average 1

|W |ˆ
U(n)

f(µ)dµ = 1
|W |

ˆ
T

f(ν)|det[Adν−1 − Id]|pdν

Notice that U(n) consists of skew-Hermitian matrices and p is the subspace of off-diagonal matrices. From
this set up and know that the product of eigen values over all off-diagonal matrices with indices {j, k}, {k, j}
are unordered, we compute the determinant as det ([Adν−1 − Id]|p) =

∏
j<k |exp(iνj) − exp(iνk)|2

det ([Adν−1 − Id]|p) =
∏
j ̸=k

(exp(−iνj)exp(iνk) − 1) =
∏
j<k

(exp(iνj)exp(−iνk) − 1) (exp(iνk)exp(−iνj) − 1)

=
∏
j<k

(exp(iνj) − exp(iνk)) (exp(−iνj) − exp(−iνk))

=
∏
j<k

|exp(iνj) − exp(iνk)|2

But, we already know that U(n) ∼= Sn, which implies |W | = |n!|. Thus, we have shownˆ
U(n)

f(µ)dµ = 1
n!

ˆ
T

f(ν)
∏
j<k

|exp(iνj) − exp(iνk)|2dν
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